2 =i =
> >

LoRa Signal Decoding with and

without Machine Learning

José Alamos, Thomas C. Schmidt

http://inet.naw-hamburg.de | t.schmidt@haw-hamburg.de

MBURG


http://inet.cpt.haw-hamburg.de/

What is LoRa?
Wireless modulation technique

_ong range (up to 15 km)
_ow power consumption (mJ)

_ow data rate (bytes/s)

Popular in low power |oT deployments
—Can run on batteries for years
— Collision-prone due to long time on air
—Improved LoRa on RIOT
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Outline
Decoding LoRa
A deep Learning with ML

Augmenting Analytics with some Learning

Lessons Learned

Prof. Dr. Thomas C. Schmidt 3



HAW
HAMBURG

LoRa Decoding

Frequency bin with the highest magnitude.

Dechirped symbol

Spectrogram Frequency spectrum
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When LoRa Frames
Collide
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LoRa Collision

Dechirped symbol (with collision)

Spectrogram Frequency spectrum
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Goal

Find the full sine wave in the dechirped symbol.
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Decoding Colliding Frames

Baseline LoRa decoder may fail under collisions

Active area of research
 Colora—- INFOCOM20
« CIC -3SIGCOMM’21
 NELoORa - SenSys’'21

« TnB — CoNEXT22

Machine learning techniques considered promising
method to boost signal recovery
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Data Samples
Software Defined Radio (SDR) Simulated data
- Reuse existing deployment. " Generate Symb()l data with

- Capture real-world symbol known parameters.

data. - Model symbol as complex
chirp with white gaussian
nolse.
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First Insight

* Finding the full sine wave is harder than expected
— LoRa collisions yield a complex frequency spectrum
— Hard to unravel using conventional signal processing techniques

« Potential of Machine Learning techniques for decoding LoRa frames
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Convolutional Neural Networks - CNN

Good at finding patterns in data ... let’s train a CNN
to find the longest sine wave in the dechirped symbol

CNN Symbol Classifier Evaluation:
 Time domain as input
— Does not converge
« Spectrogram (STFT) as input
—Worse than baseline decoder
* Frequency spectrum (FFT) as input
— Does not detect symbols with collisions
— But performs slightly better than baseline decoder
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Need more features?
Wavelet Transform
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Aftermath of CNN Classifier

Some features yield slightly better accuracy
than the baseline decoder

« At the cost of high computational complexity
* The classifier works best for symbols without collision

Gains are not enough to justify the complexity
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Adjust the Focus to Something Promising

Peak Classification
« Retrain CNN to peak probabilities
 Expensive ... but worse than baseline decoder

Denoiser Autoencoder
« Train a neural network to remove noise from frequency domain

 Improves SNR ... but distorts phase
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Last Hope: Simple Math

We observe
« A true signal is either symmetric or anti-symmetric
« Half-Period Discriminator (HDP) identifies symmetry properties

« Magnitude of a true peak is similar to preamble peaks

« Peak Magnitude Deviation (PMD) evaluates the differences in peak
heights

« Bayesian classifier serves as likelihood estimator from HDP and PMD
* Posterior probability derived from simulations
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Results D1 (High SNR) D2 (High SNR w/o LoS)
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Results (2)

Simulated LTE
channel models

» Extended Typical
Urban (ETU)

» Flat fading

» Bandwidth:
125 KHz

» 15 pkt/s
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Operational Complexity

Baseline CoRa
B Dechirp B Dechirp
80 BN FFT B Feature extraction
" B Argmax B Bayesian classifier
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Post Mortem Analysis
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Overall, we spent six months in exploring,
training, and twisting ML models

Was it worth it?
Yes!
 Learned much about Deep Learning

« Acquired much deeper insight into the
problem from analyzing the flops

« Can reasonably claim:
ML is Not a Silver Bullet

19



HAW
HAMBURG

ML is Not a Silver Bullet

But for certain tasks, Deep Learning is likely the best approach.

koio .

- Large Language Models

- Denoising

- Sketching Santa Claus
drinking Glihwein in
Hamburg.
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Conclusions

Intense struggle with data helped us to deeply learn about LoRa signals

Insides inspired analytic approach

Simple math approach did the job better and faster

But: With the Bayesian estimator, we can still claim to use ML!
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Backup: Bayesian Posterior Probability
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